organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Hexamethylenetetraminium 2,4,6-trinitrophenolate

Anwar Usman,^a Suchada Chantrapromma,^a† Hoong-Kun Fun,^a* Bo-Long Poh^b and Chatchanok Karalai^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSchool of Chemistry, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand Correspondence e-mail: hkfun@usm.my

Received 9 October 2001 Accepted 1 November 2001 Online 22 December 2001

In the title complex, the 1:1 ionic adduct of hexamethylenetetraminium and 2,4,6-trinitrophenolate, $C_6H_{13}N_4^{+}$.- $C_6H_2N_3O_7^{-}$, the cation acts as a donor for bifurcated hydrogen bonds to the O atoms of the phenolate and one of the nitro groups of the 2,4,6-trinitrophenolate anion. The crystal structure is built from sheets of cations and anions, and is stabilized by intermolecular $C-H\cdots O$ and $C-H\cdots \pi$ interactions.

Comment

The crystal structures of the adducts of hexamethylenetetramine (HMT) and mono-, di- or triphenol derivatives have been investigated intensively (Jordan & Mak, 1970; Mak et al., 1977, 1978; Mahmoud & Wallwork, 1979; Coupar, Glidewell & Ferguson, 1997; Coupar, Ferguson et al., 1997; Ng et al., 2001; Usman et al., 2001). Although HMT usually acts as an acceptor of up to three $O-H \cdots N$ hydrogen bonds or partially acts as a hydrogen bond donor with 4-nitrophenol, we have shown recently that HMT can also act solely as an N-H···O hydrogen donor in the presence of 2,4-dinitrophenol (Usman et al., 2001). In this HMT-2,4-dinitrophenol complex, the phenolic H atom is transferred to HMT. This H-atom transfer process occurs because 2,4-dinitrophenol is a stronger acid than the other phenols investigated. This unusual behaviour of HMT in the solid state is of interest, and led us to the title adduct, (I), where 2,4,6-trinitrophenol (TNP) also acts as a stronger acid.

In (I), the TNP also transfers an H atom from the hydroxy group to the HMT moiety to form the 2,4,6-trinitrophenolate anion (TNP⁻), making HMT positively charged.

The bond lengths and angles (Table 1) within the hexamethylenetetraminium cation (HMT^+) are comparable with those of HMT^+ in the polymorphs of hexamethylenetetraminium–2,4-dinitrophenolate (Usman *et al.*, 2001), while those within the TNP⁻ anion are comparable with those of TNP⁻ in potassium and ammonium 2,4,6-trinitrophenolate (Maartmann-Moe, 1969). For instance, the mean N–O [1.224 (5) Å] and the C–O bond length in the title complex agree with the mean N–C and C–O bond lengths in the two 2,4,6-trinitrophenolate derivatives reported by Maartmann-Moe (1969) [N–C 1.224 (6) Å and C–O 1.241 (7) Å].

In the HMT⁺ cation, the N-C bond distances around the N4 atom are elongated due to the positive charge localized on the protonated N4 atom. The N4-C7, N4-C8 and N4-C9 distances [mean value of 1.518 (2) Å] are equivalent to the typical N-C single-bond length in the trimethylammonium ion (Allen *et al.*, 1987). The protonated N4 atom also slightly affects the π -electron distribution in the surrounding atoms, which can be seen in the shortening by about 0.03 Å of the N5-C7, N6-C8 and N7-C9 distances compared with the other two N5-C, N6-C and N7-C bonds.

In the title adduct, the TNP⁻ anion is nearly planar, with the nitro groups slightly twisted about their C–N bonds so that the angles between the aromatic ring plane and those of the CNO₂ groupings containing N1, N2 and N3 are 11.06 (1), 7.96 (9) and 5.46 (10)°, respectively. The nitro O2–O7 atoms deviate from the aromatic ring plane by 0.287 (2), -0.114 (2), -0.307 (1), -0.062 (2), 0.175 (2) and -0.017 (2) Å, respectively. For the HMT⁺ cation, all of the six-membered NCNCNC rings adopt a chair conformation, as shown by their puckering parameters (Cremer & Pople, 1975), which are available from the IUCr archives.

The crystal structure of the title adduct is built from sheets of HMT⁺ cations and separate sheets of TNP⁻ anions stacked alternately along the *a* axis. The HMT⁺ cation acts as an N– $H \cdots O$ hydrogen-bond donor and forms bifurcated interionic hydrogen bonds with both the phenolate-O atom and a nitro-O atom of the same adjacent TNP⁻ anion (Table 2). These interactions link the HMT⁺ and TNP⁻ ions into ion pairs. Interionic C12–H12 $A \cdots O7$ and C12–H12 $B \cdots O4$ inter-

Figure 1

The structure of the title adduct showing 50% probability displacement ellipsoids and the atom-numbering scheme.

[†] Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.

actions connect the ion pairs into infinite two-dimensional networks which lie perpendicular to the c axis (Fig. 2). An interionic C5–H5··· π interaction involving the aromatic ring centroid (Cg) of the TNP⁻ anion was also observed (Table 2).

Figure 2

Packing diagram of the title adduct viewed down the c axis. The dashed lines denote the interionic hydrogen-bond interactions.

Experimental

Complex (I) was prepared by mixing thoroughly 1.40 g (10 mmol) of hexamethylenetetramine and 2.29 g (10 mmol) of 2,4,6-trinitrophenol, and then dissolving in 50 ml of acetone with a few drops of water. The mixture was warmed until a clear solution was obtained. The solution was filtered and left to evaporate slowly in air. Yellow single crystals were obtained from the solution after a few days.

Crystal data

	2
$C_6H_{13}N_4^+ \cdot C_6H_2N_3O_7^-$	$D_x = 1.661 \text{ Mg m}^{-3}$
$M_r = 369.31$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 6652
a = 12.4995 (2) Å	reflections
b = 6.6344(1) Å	$\theta = 3.2-28.3^{\circ}$
c = 18.6203 (2) Å	$\mu = 0.14 \text{ mm}^{-1}$
$\beta = 107.022 (1)^{\circ}$	T = 183 (2) K
V = 1476.48 (4) Å ³	Block, yellow
Z = 4	$0.40 \times 0.40 \times 0.32 \text{ mm}$
Data collection	
Siemens SMART CCD area-	3575 independent reflections
detector diffractometer	2697 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.069$
Absorption correction: empirical	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -16 \rightarrow 16$
$T_{\min} = 0.947, \ T_{\max} = 0.957$	$k = -8 \rightarrow 7$
8504 measured reflections	$l = -24 \rightarrow 16$

Table 1

Selected geometric parameters (\hat{A}, \circ) .

O1-C1	1.2456 (19)	N5-C7	1.4488 (19)
O2-N1	1.2037 (19)	N5-C10	1.4737 (19)
O3-N1	1.221 (2)	N5-C12	1.474 (2)
O4-N2	1.2393 (18)	N6-C8	1.446 (2)
O5-N2	1.2258 (19)	N6-C11	1.4719 (19)
O6-N3	1.226 (2)	N6-C10	1.472 (2)
O7-N3	1.2262 (18)	N7-C9	1.4431 (19)
N4-C8	1.517 (2)	N7-C11	1.4733 (19)
N4-C9	1.5181 (19)	N7-C12	1.474 (2)
N4-C7	1.519 (2)		
O6-N3-O7	121.20 (15)	O2-N1-O3	121.94 (16)
O5-N2-O4	122.60 (14)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N4-H14N···O1	0.94 (2)	1.81 (3)	2.666 (2)	152 (2)
N4-H14N···O7	0.94 (2)	2.26 (2)	2.865 (2)	122 (2)
$C12-H12A\cdots O7^{i}$	0.97	2.49	3.362 (2)	149
$C12 - H12B \cdots O4^{ii}$	0.97	2.41	3.364 (2)	167
$C5-H5A\cdots Cg^{iii}$	0.93	3.30	4.07	142

Symmetry codes: (i) x, 1 + y, z; (ii) 1 + x, 1 + y, z; (iii) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.058$	$w = 1/[\sigma^2(F_o^2) + (0.0807P)^2]$ where $P = (F^2 + 2F^2)/3$
$wR(F^2) = 0.154$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.95	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
3575 reflections	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$
240 parameters	Extinction correction: SHELXTL
H atoms: see below	Extinction coefficient: 0.033 (4)

The H14N atom was located in a difference Fourier map and was refined freely as an isotropic atom. After checking for H atoms in the difference map, the positions of all remaining H atoms were geometrically idealized and allowed to ride on their parent atoms with C-H distances in the range 0.93-0.97 Å and fixed displacement parameters defined by $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors would like to thank the Malaysian Government and the Universiti Sains Malaysia for research grant R&D No. 305/PFIZIK/610961, and AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1125). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Coupar, P. I., Ferguson, G., Glidewell, C. & Meehan, P. R. (1997). Acta Cryst. C53, 1978-1980.
- Coupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521-533.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Jordan, T. H. & Mak, T. C. W. (1970). J. Chem. Phys. 52, 3790-3794.
- Maartmann-Moe, K. (1969). Acta Cryst. B25, 1452-1460.
- Mahmoud, M. M. & Wallwork, S. C. (1979). Acta Cryst. B35, 2370-2374.
- Mak, T. C. W., Tse, C.-S., Chong, Y.-H. & Mok, F.-C. (1977). Acta Cryst. B33, 2980-2982.
- Mak, T. C. W., Yu, W.-H. & Lam, Y.-S. (1978). Acta Cryst. B34, 2061–2063.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Ng, S. W., Hu, S. Z., Hanna, J. V., Raj, S. S. S., Fun, H.-K., Razak, I. A., Wojciechowski, G. & Brzezinski, B. (2001). J. Mol. Struct. 595, 189-194.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA,
- Spek, A. L. (1990). Acta Cryst. A46, C-34.

Usman, A., Chantrapromma, S. & Fun, H.-K. (2001). Acta Cryst. C57, 1443-1446.